一般来说,一个正整数可以拆分成若干个正整数的和。
例如,1=1,10=1+2+3+4 等。
对于正整数 n的一种特定拆分,我们称它为“优秀的”,当且仅当在这种拆分下,n 被分解为了若干个不同的 2 的正整数次幂。
注意,一个数 x 能被表示成 2 的正整数次幂,当且仅当 x 能通过正整数个 2 相乘在一起得到。
例如,10=8+2=23+21 是一个优秀的拆分。
但是,7=4+2+1=22+21+20就不是一个优秀的拆分,因为 1 不是 2 的正整数次幂。
现在,给定正整数 n,你需要判断这个数的所有拆分中,是否存在优秀的拆分。
若存在,请你给出具体的拆分方案。
输入文件只有一行,一个正整数 n,代表需要判断的数。
如果这个数的所有拆分中,存在优秀的拆分。
那么,你需要从大到小输出这个拆分中的每一个数,相邻两个数之间用一个空格隔开。
可以证明,在规定了拆分数字的顺序后,该拆分方案是唯一的。
若不存在优秀的拆分,输出 “-1”(不包含双引号)。
对于 100% 的数据,1≤n≤1×107。
6
4 2
6=4+2=22+21 是一个优秀的拆分。
注意,6=2+2+2 不是一个优秀的拆分,因为拆分成的 3个数不满足每个数互不相同。
6
4 2