问题 B: Break Sequence

内存限制:256 MB 时间限制:4 S
题面:Markdown 评测方式:文本比较 上传者:
提交:1 通过:1

题目描述

Given a sequence&nbsp;$a$ length $n$ and a set $S$ size $m$. Count the number of sequence $0=p_0&lt;p_1&lt;p_2&lt;\cdots&lt;p_k&lt;p_{k+1}=n$&nbsp;<span style="color:#333333;font-family:system&#44;font-size:14px;background-color:#FFFFFF;">such that:</span> <br /> <span style="color:#333333;font-family:system&#44;font-size:14px;background-color:#FFFFFF;">For any $0 \leq i \leq k&#44; x \in S$ and $1 \leq j \leq n&#44; \sum_{l=p_i+1}^{p_{i+1}}\left[a_l=j\right] \neq x$.<br /> </span> <br />

输入格式

Line $1$: Two integers $n&#44;m$.&nbsp; <br /> Line $2$: $n$ integers&#44; indicating sequence $a$.&nbsp; <br /> Line $3$: $m$ integers&#44; indicating set $S$. <br />

输出格式

Line $1$: An integer&#44; the answer&#44; modulo $998244353$.

输入样例 复制

5 1
1 2 3 1 3
2

输出样例 复制

11

数据范围与提示

$1\leq n\leq 2\times10^5$. $0\leq m\leq 10$. $1\leq a_i\leq n$. All integers in set $S$ are between $1$ and $n$.