给定一个二分图,其中左半部包含 n1个点(编号 1∼n1),右半部包含 n2 个点(编号 1∼n2),二分图共包含 m 条边。
数据保证任意一条边的两个端点都不可能在同一部分中。
请你求出二分图的最大匹配数。
二分图的匹配:给定一个二分图 G,在 G 的一个子图 M 中,M 的边集 {E}中的任意两条边都不依附于同一个顶点,则称 M 是一个匹配。
二分图的最大匹配:所有匹配中包含边数最多的一组匹配被称为二分图的最大匹配,其边数即为最大匹配数。
第一行包含三个整数 n1、 n2 和 m。
接下来 m 行,每行包含两个整数 u 和 v,表示左半部点集中的点 u 和右半部点集中的点 v 之间存在一条边。
输出一个整数,表示二分图的最大匹配数。
1≤n1,n2≤500,
1≤u≤n1,
1≤v≤n2,
1≤m≤105
2 2 4 1 1 1 2 2 1 2 2
2
2 2 4
1 1
1 2
2 1
2 2
2