【问题描述】
老胡买了是长方体形的西瓜来犒劳大家....
这块西瓜长m厘米,宽n厘米,高h厘米.他发现如果把这块西瓜平均地分成m*n*h块1立方厘米的小正方体,那么每一小块都会有一个营养值(可能为负,因为西瓜是有可能坏掉的,但是绝对值不超过200)。
现在老胡决定从这m*n*h立方厘米的西瓜中切出mm*nn*hh(0<=mm<=m,0<=nn<=n,0<=hh<=h)立方厘米的一块小西瓜(一定是立方体形,长宽高均为整数),送给该场比赛最高分获得者补充营养。他想知道他最多能获得多少营养值。
换句话说,我们希望从一个m*n*h的三维矩阵中,找出一个三维子矩阵,这个子矩阵的权和最大.
一个2*3*4的例子,最优方案为切红色2*3*1部分。
【文件输入】matrix.in
首行三个正整数h,m,n(注意顺序),分别表示西瓜的高,长,宽.
以下h部分,每部分是一个m*n的矩阵,第i部分第j行的第k个数表示西瓜第i层,第j行第k列的那块1立方厘米的小正方体的营养值.
【文件输出】matrix.out
老胡所能得到的最大营养值
【输入输出样例】
matrix.in
|
matrix.out
|
2 3 4
4 1 2 8
0 5 -48 4
3 0 1 9
2 1 4 9
1 0 1 7
3 1 2 8
|
45
|
【数据规模】
对于30%的数据,h=1,1<=m,n<=10
对于全部的数据,1<=h<=32,1<=m,n<=50,保证h<=m,n
[说明]此题中出现的所有数全为整数。
2 3 4
4 1 2 8
0 5 -48 4
3 0 1 9
2 1 4 9
1 0 1 7
3 1 2 8
45