4155: Mister B and PR Shifts

内存限制:256 MB 时间限制:2 S
题面:传统 评测方式:文本比较 上传者:
提交:2 通过:2

题目描述

B. Mister B and PR Shifts
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output
Some time ago Mister B detected a strange signal from the space, which he started to study.
After some transformation the signal turned out to be a permutation p of length n or its cyclic shift. For the further investigation Mister B need some basis, that's why he decided to choose cyclic shift of this permutation which has the minimum possible deviation.
Let's define the deviation of a permutation p as .
Find a cyclic shift of permutation p with minimum possible deviation. If there are multiple solutions, print any of them.
Let's denote id k (0≤k<n) of a cyclic shift of permutation p as the number of right shifts needed to reach this shift, for example:
  • k=0: shift p1,p2,... pn,
  • k=1: shift pn,p1,... pn-1,
  • ...,
  • k=n-1: shift p2,p3,... pn,p1.
Input
First line contains single integer n (2≤n≤106) − the length of the permutation.
The second line contains n space-separated integers p1,p2,...,pn (1≤pin)− the elements of the permutation. It is guaranteed that all elements are distinct.
Output
Print two integers: the minimum deviation of cyclic shifts of permutation p and the id of such shift. If there are multiple solutions, print any of them.
Examples
Input
3
1 2 3
Output
0 0
Input
3
2 3 1
Output
0 1
Input
3
3 2 1
Output
2 1
Note
In the first sample test the given permutation p is the identity permutation, that's why its deviation equals to 0, the shift id equals to 0 as well.
In the second sample test the deviation of p equals to 4, the deviation of the 1-st cyclic shift (1,2,3) equals to 0, the deviation of the 2-nd cyclic shift (3,1,2) equals to 4, the optimal is the 1-st cyclic shift.
In the third sample test the deviation of p equals to 4, the deviation of the 1-st cyclic shift (1,3,2) equals to 2, the deviation of the 2-nd cyclic shift (2,1,3) also equals to 2, so the optimal are both 1-st and 2-nd cyclic shifts.


前段时间,B先生从太空中探测到一个奇怪的信号,他开始研究这个信号。

经过一些变换后,信号变成了长度为n的置换p或其循环移位。为了进一步的研究,B先生需要一些基础,这就是为什么他决定选择这种排列的循环移位,这种移位具有最小的可能偏差。

让我们将置换p的偏差定义为。

找到具有最小可能偏差的置换p的循环移位。如果有多个解决方案,请打印其中任何一个。

让我们将置换p的循环移位的id k(0≤k<n)表示为达到该移位所需的右移次数,例如:

k=0:移位p1,p2,。。。pn,

k=1:移位pn,p1,。。。pn-1,

...,

k=n-1:移位p2,p3,。。。pn,p1。


输入格式

第一行包含单个整数n(2≤n≤106)−排列的长度。

第二行包含n个空格分隔的整数p1,p2,。。。,pn(1≤pi≤n)−置换的元素。保证所有元素都是不同的。

输出格式

打印两个整数:置换p的循环移位的最小偏差和该移位的id。如果有多个解决方案,请打印其中任何一个。

输入样例 复制

3
1 2 3

输出样例 复制

0 0

数据范围与提示

在第一个样本测试中,给定的排列p是单位排列,这就是为什么它的偏差等于0,移位id也等于0。

在第二个样本测试中,p的偏差等于4,第1个循环移位的偏差(1,2,3)等于0,第2个循环移位(3,1,2)的偏差等于2,最佳的是第1个周期移位。

在第三个样本测试中,p的偏差等于4,第1个循环移位(1,3,2)的偏差等于2,第2个循环移位的偏差(2,1,3)也等于2,因此最佳的是第1个和第2个周期移位。