4350: Bear and Tree Jumps熊和树跳跃

内存限制:256 MB 时间限制:2 S
题面:传统 评测方式:文本比较 上传者:
提交:4 通过:4

题目描述

C. Bear and Tree Jumps
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output
树是一个没有圈的无向连通图。两个顶点之间的距离是它们之间简单路径中的边数。

利马克是一只小北极熊。他住在一棵由n个顶点组成的树中,编号为1到n。

利马克最近学会了跳。他最多可以从一个顶点跳到距离k以内的任何顶点。

对于一对顶点(s, t) 我们定义f(s, t) 因为Limak需要从s到t的最小跳跃次数。您的任务是找到f(s, t) 在所有顶点对(s, t) 这样 s < t。
A tree is an undirected connected graph without cycles. The distance between two vertices is the number of edges in a simple path between them.
Limak is a little polar bear. He lives in a tree that consists of n vertices, numbered 1 through n.
Limak recently learned how to jump. He can jump from a vertex to any vertex within distance at most k.
For a pair of vertices (s,t) we define f(s,t) as the minimum number of jumps Limak needs to get from s to t. Your task is to find the sum of f(s,t) over all pairs of vertices (s,t) such that s<t.
Input
The first line of the input contains two integers n and k (2≤n≤200000, 1≤k≤5)− the number of vertices in the tree and the maximum allowed jump distance respectively.
The next n-1 lines describe edges in the tree. The i-th of those lines contains two integers ai and bi (1≤ai,bin)− the indices on vertices connected with i-th edge.
It's guaranteed that the given edges form a tree.
Output
Print one integer, denoting the sum of f(s,t) over all pairs of vertices (s,t) such that s<t.
Examples
Input
6 2
1 2
1 3
2 4
2 5
4 6
Output
20
Input
13 3
1 2
3 2
4 2
5 2
3 6
10 6
6 7
6 13
5 8
5 9
9 11
11 12
Output
114
Input
3 5
2 1
3 1
Output
3
Note
In the first sample, the given tree has 6 vertices and it's displayed on the drawing below. Limak can jump to any vertex within distance at most 2. For example, from the vertex 5 he can jump to any of vertices: 1, 2 and 4 (well, he can also jump to the vertex 5 itself).
There are pairs of vertices (s,t) such that s<t. For 5 of those pairs Limak would need two jumps: (1,6),(3,4),(3,5),(3,6),(5,6). For other 10 pairs one jump is enough. So, the answer is 5·2+10·1=20.
In the third sample, Limak can jump between every two vertices directly. There are 3 pairs of vertices (s<t), so the answer is 3·1=3.

输入格式

输入的第一行包含两个整数n和k(2 ≤ n ≤ 200 000, 1 ≤ k ≤ 5) -树中的顶点数和最大允许跳跃距离。
接下来的n-1行描述树中的边。这些行中的第i行包含两个整数ai和bi(1 ≤ ai, bi ≤ n)-与第i条边连接的顶点上的索引。
保证给定的边形成一棵树。

输出格式

打印一个整数,表示f(s, t) 在所有顶点对(s, t) 使得s<t。

输入样例 复制

6 2
1 2
1 3
2 4
2 5
4 6

输出样例 复制

20