5970: Bubble Sort Graph

内存限制:256 MB 时间限制:2 S
题面:传统 评测方式:文本比较 上传者:
提交:0 通过:0

题目描述

D. Bubble Sort Graph
time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output
Iahub recently has learned Bubble Sort, an algorithm that is used to sort a permutation with n elements a1, a2, ..., an in ascending order. He is bored of this so simple algorithm, so he invents his own graph. The graph (let's call it G) initially has n vertices and 0 edges. During Bubble Sort execution, edges appear as described in the following algorithm (pseudocode).
procedure bubbleSortGraph()
 build a graph G with n vertices and 0 edges
 repeat
 swapped = false
 for i = 1 to n - 1 inclusive do:
 if a[i] > a[i + 1] then
 add an undirected edge in G between a[i] and a[i + 1]
 swap( a[i], a[i + 1] )
 swapped = true
 end if
 end for
 until not swapped 
 /* repeat the algorithm as long as swapped value is true. */ 
end procedure
For a graph, an independent set is a set of vertices in a graph, no two of which are adjacent (so there are no edges between vertices of an independent set). A maximum independent set is an independent set which has maximum cardinality. Given the permutation, find the size of the maximum independent set of graph G, if we use such permutation as the premutation a in procedure bubbleSortGraph.
Input
The first line of the input contains an integer n (2≤n≤105). The next line contains n distinct integers a1, a2, ..., an (1≤ain).
Output
Output a single integer − the answer to the problem.
Examples
Input
3
3 1 2
Output
2
Note
Consider the first example. Bubble sort swaps elements 3 and 1. We add edge (1, 3). Permutation is now [1, 3, 2]. Then bubble sort swaps elements 3 and 2. We add edge (2, 3). Permutation is now sorted. We have a graph with 3 vertices and 2 edges (1, 3) and (2, 3). Its maximal independent set is [1, 2].

输入样例 复制


输出样例 复制


分类标签