## 输出格式
每组数据输出一个整数n,表示 达到这个目标的最小操作次数
## 样例 #1
### 样例输入 #1
```
6
1
1789
6
0 1 3 3 7 0
2
-1000000000 1000000000
4
4 3 2 1
5
2 5 7 6 3
7
1 1 1 1 1 1 1
```
### 样例输出 #1
```
0
6
2
5
7
0
```
## 提示
第一组数据所有元素相同,不需要操作 .
In the second test case it is possible to create a copy of the given array. After that there will be two identical arrays:
$ [ \ 0 \ 1 \ 3 \ 3 \ 7 \ 0 \ ] $ and $ [ \ 0 \ 1 \ 3 \ 3 \ 7 \ 0 \ ] $
After that we can swap elements in a way so all zeroes are in one array:
$ [ \ 0 \ \underline{0} \ \underline{0} \ 3 \ 7 \ 0 \ ] $ and $ [ \ \underline{1} \ 1 \ 3 \ 3 \ 7 \ \underline{3} \ ] $
Now let's create a copy of the first array:
$ [ \ 0 \ 0 \ 0 \ 3 \ 7 \ 0 \ ] $ , $ [ \ 0 \ 0 \ 0 \ 3 \ 7 \ 0 \ ] $ and $ [ \ 1 \ 1 \ 3 \ 3 \ 7 \ 3 \ ] $
Let's swap elements in the first two copies:
$ [ \ 0 \ 0 \ 0 \ \underline{0} \ \underline{0} \ 0 \ ] $ , $ [ \ \underline{3} \ \underline{7} \ 0 \ 3 \ 7 \ 0 \ ] $ and $ [ \ 1 \ 1 \ 3 \ 3 \ 7 \ 3 \ ] $ .
Finally, we made a copy where all elements are equal and made $ 6 $ operations.
It can be proven that no fewer operations are enough.