有N(1 <= N <= 100,000)座小山,每座山所占的区域用直线(x1, y1) 到 (x2, y2)来表示(x1 < x2 并且 y1 < y2)。也就是说这些山用笛卡尔坐标系里的线段来表示,这些用于表示小山的线段都没有任何交点,第一座山的一端位于(x1, y1) = (0,0)
贝西从(0,0)开始在第一座山上漫步,一旦贝西到了一座山,她会一直走到该山的终点,这时,她会从边缘处起跳,如果她降落到另一座山上,她会继续在新的山上漫步。贝西起跳后沿y轴方向下落,如果贝西不能降落到一座山上,她会一直下落,直到到达y轴的负无穷大位置(y = -infinity)。
每座用线段表示的山 (x1, y1) -> (x2, y2)包含(x1, y1)这个点,但不包含(x2, y2) ,请计算出贝西总共在多少座山上漫步了。
* Line 1: The number of hills, N.
* Lines 2..1+N: Line i+1 contains four integers (x1,y1,x2,y2)
describing hill i. Each integer is in the range
0..1,000,000,000.
4
0 0 5 6
1 0 2 1
7 2 8 5
3 0 7 7
3
There are four hills. The first hill runs from (0,0) to (5,6), and so on.
Bessie walks on hills #1, #4, and finally #3.