Given a permutation p of 1,2,⋯,n and a non-negative integer k. Please calculate the number of subsets T1,2,3,4,...nsatisfying |T|=k and ∣P(T)∩T∣=0.
Where P(T)means P(T)={y∣y=px,x∈T}.
Each test contains multiple test cases. The first line contains the number of test cases (1≤T≤15). Desc
The first line contains two separated integers n, k.
The second line contains n integers P1,P2,⋯,Pn,(1≤Pi≤n), denoting the given permutation.
n1≤n≤5×105,0≤k≤n.
For all test cases 6∑n≤5×106
For each test case:
Print one integer in a line, denoting the answer number modulo 998 244 353.
3
5 1
5 3 2 1 4
5 2
2 5 1 3 4
10 3
10 9 3 8 6 4 5 7 2 1
5
5
40