Find a number 0≤y≤1090 \leq y\leq 10^90≤y≤109 so that the square of yyy starts with xxx in Decimal.
Formally, given a integer xxx, find an integer yyy(0≤y≤1090 \leq y\leq 10^90≤y≤109) such that there exists a nonnegative integer kkk that satisfies ⌊y210k⌋=x\lfloor \frac{y^2}{10^k} \rfloor = x⌊10ky2⌋=x.