9436: XOR of Suffix Sums

内存限制:128 MB 时间限制:1 S
题面:Markdown 评测方式:文本比较 上传者:
提交:2 通过:0

题目描述

Given an array which is initially empty you need to perform $q$ operations: - Given two non-negative integers $t$ and $v$ take out the element from the end of the array for $t$ times and then append $v$ to the end of the array. It is guaranteed that $t$ does not exceed the length of the array before this operation. After each operation let $a_1 a_2 \ldots a_n$ be the current array find the bitwise **XOR** of $s_1 s_2 \ldots s_n$ where $s_i = a_i + a_{i+1} + \ldots + a_n$ is the sum of the suffix starting from position $i$. Since the answers may be very large output them modulo $2\ 097\ 152$. The bitwise XOR of non-negative integers $A$ and $B$ $A \oplus B$ is defined as follows: - When $A \oplus B$ is written in ba<x>se two the digit in the $2^d$'s place ($d \ge 0$) is $1$ if exactly one of the digits in that place of $A$ and $B$ is $1$ and $0$ otherwise. For example we have $3 \oplus 5 = 6$ (in ba<x>se two: $011 \oplus 101 = 110$). Generally the bitwise XOR of $k$ non-negative integers $p_1 p_2 \ldots p_k$ is defined as $(\ldots((p_1 \oplus p_2) \oplus p_3) \oplus \ldots \oplus p_k)$ and we can prove that this value does not depend on the order of $p_1 p_2 \ldots p_k$.

输入格式

The first line contains an integer $q$ ($1 \le q \le 5 \times 10^5$)&#44; denoting the number of operations. Each of the following $q$ lines contains two non-negative integers $t$ and $v$ ($0 \le v \le 10^9$)&#44; describing an operation&#44; where $t$ does not exceed the length of the array before this operation.

输出格式

Output $q$ lines&#44; each of which contains an integer&#44; denoting the answer.

输入样例 复制

5
0 1
0 2
1 3
0 6
2 100000

输出样例 复制

1
1
7
5
1

数据范围与提示

After the first operation&#44; the current array is $[1]$&#44; the suffix sum array is $[1]$&#44; and the bitwise XOR of the suffix sums is $1$. After the second operation&#44; the current array is $[1&#44;2]$&#44; the suffix sum array is $[3&#44;2]$&#44; and the bitwise XOR of the suffix sums is $1$. After the third operation&#44; the current array is $[1&#44;3]$&#44; the suffix sum array is $[4&#44;3]$&#44; and the bitwise XOR of the suffix sums is $7$. After the fourth operation&#44; the current array is $[1&#44;3&#44;6]$&#44; the suffix sum array is $[10&#44;9&#44;6]$&#44; and the bitwise XOR of the suffix sums is $5$. After the fifth operation&#44; the current array is $[1&#44;100\&#44;000]$&#44; the suffix sum array is $[100\&#44;001&#44;100\&#44;000]$&#44; and the bitwise XOR of the suffix sums is $1$.